Bayesian Machine Learning: Some Basics

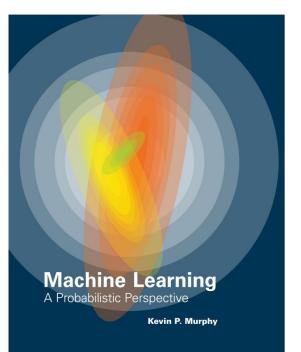
Feature Engineering Group

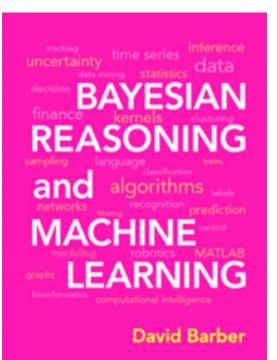
Chen Huang

Feature Engineering Group, Data Mining Lab, Big Data Research Center, UESTC huangc.uestc@gmail.com

For more information

- <u>http://fastml.com/bayesian-machine-learning/</u>
- <u>https://metacademy.org/roadmaps/rgrosse/baye</u> <u>sian_machine_learning</u>

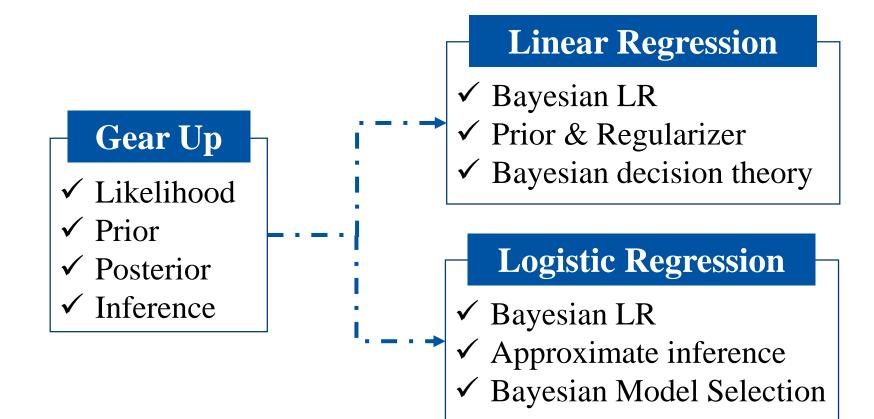




For more information

Research = search again and again...

Bayesian Machine Learning Contents



Four main steps

- Likelihood $P(D|\theta)$
 - Mechanism giving rise our observations D given a particular value of the parameters of interest
- **Prior** $P(\theta)$
 - Summarize our prior beliefs about the parameters
- **Posterior** $P(\theta|D)$
 - Using Bayes Theorem to combine prior beliefs with observed evidence
- Inference (*Challenging problem*)
 - Use $P(\theta|D)$ to draw <u>further conclusions</u>
 - Algorithms: MAP/MCMC/VI

" Further conclusions "

- **Point estimation** if we must report a single best guess of theta
- Make predictions by averaging over the posterior distribution
- Make decisions so as to minimize posterior expected loss
- compare alternative models giving rise to **Bayesian** model comparison
- Naturally extend to **online** and **distributed learning**

Gear Up! Bayesian or Not?

Some issues

- How to choose a prior?
 - Informative
 - Uninformative
- Intractable integrals/posteriors

$$P(D) = \int P(\theta) P(D|\theta) d\theta$$

- Conjugate prior
- Approximation

- Gibbs sampling/MCMC
- Variational Inference
- Sequential MC/particle filter
- Stochastic MCMC/VI
- Streaming Variational Bayes

Gear Up! Before we're going too far...

Give me some Bayesian models

- Gaussian Mixture Model
- Hidden Markov Model
- Conditional Random Field
- Bayesian Networks
- Gaussian Processes
- Dirichlet Process
-
- BayesPA (*JMLR*'14 @Jun Zhu)
- OASIS (AAAI'11 @Andrew B. Goldberg & Xiaojin Zhu)

Loss function

$$L(Y, F(X)) = L(Y, X\beta) = (Y - X\beta)^{T}(Y - X\beta)$$
$$\hat{\beta} = (X^{T}X)^{-1}X^{T}Y$$



Linear Regression From Bayesian Perspective

Four main steps

- Likelihood $P(D|\theta)$ $y = f(X) + \varepsilon = XW + \varepsilon$

- **Prior**
$$P(\theta)$$

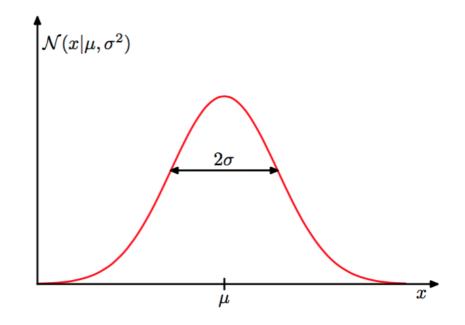
 $W \sim N(\mu, \Sigma); \varepsilon \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$
 $f \sim N(X\mu, X\Sigma X^T); y \sim N(X\mu, X\Sigma X^T + \sigma^2 \mathbf{I})$

- **Posterior** $P(\theta|D)$

$$P(W, y | X, \mu, \Sigma, \sigma^{2}) = N\left(\begin{bmatrix} \mu \\ X\mu \end{bmatrix}, \begin{bmatrix} \Sigma & (X\Sigma)^{T} \\ X\Sigma & X\Sigma X^{T} + \sigma^{2}I \end{bmatrix}\right)$$
$$P(W | D, \mu, \Sigma, \sigma^{2}) = N(\mu_{W}, \Sigma_{W})$$

Linear Regression From Bayesian Perspective

- **Point estimation** for $P(\theta|D)$ $P(W|D, \mu, \Sigma, \sigma^2) = N(\mu_W, \Sigma_W)$



Linear Regression From Bayesian Perspective

Bayesian predictive distribution

- **Predictive distribution** for $y^* = X^*W + \varepsilon$

$$P(y^*|D, X^*, \mu, \Sigma, \sigma^2)$$

= $\int P(y^*|W, X^*, \sigma^2) P(W|D, \mu, \Sigma, \sigma^2) dW$
= $N(X^*\mu_W, X^*\Sigma_W X^{*T} + \sigma^2 I)$

Make predictions by averaging over the posterior distribution of parameters

Why MAP?

Bayesian decision theory

- Model **posterior expected loss** of *a* by averaging the loss function over the **unknown** parameter θ

$$\rho(p(\theta \mid \mathcal{D}), a) = \mathbb{E}[L(\theta, a) \mid \mathcal{D}] = \int_{\Theta} L(\theta, a)p(\theta \mid \mathcal{D}) d\theta.$$

How bad is
my action
Weighted sum of
loss caused by my
action

Bayesian decision theory \rightarrow some facts

- The **Bayes** estimator of

A decision rule that minimizes posterior expected loss

- Posterior expected squared loss is posterior mean $E(\theta|D)$
- Posterior expected **absolute loss** is posterior median
- Posterior expected (relaxed) **0-1 loss**, we have **MAP**!

Optimization is easier than integration!

BDT for classification with 0-1 loss

Bayes action is then to predict the class with the highest probability (MAP under 0-1 loss)

$$\mathbb{E}\left[L(y', a = 1) \mid x', \mathcal{D}\right] = \Pr(y' = 0 \mid x', \mathcal{D})$$
$$\mathbb{E}\left[L(y', a = 0) \mid x', \mathcal{D}\right] = \Pr(y' = 1 \mid x', \mathcal{D})$$

Bayesian Linear Regression

Relation to ridge regression

 $w \sim N(\mu, s^2 I), \mu = 0$, then it's the ridge regression solution

$$\boldsymbol{\mu}_{\mathbf{w}|\mathcal{D}} = \boldsymbol{\mu} + \boldsymbol{\Sigma} \mathbf{X}^{\top} (\mathbf{X} \boldsymbol{\Sigma} \mathbf{X}^{\top} + \sigma^{2} \mathbf{I})^{-1} (\mathbf{y} - \mathbf{X} \boldsymbol{\mu})$$
$$\boldsymbol{\mu}_{\mathbf{w}|\mathcal{D}} = s^{2} \mathbf{X}^{\top} (s^{2} \mathbf{X} \mathbf{X}^{\top} + \sigma^{2} \mathbf{I})^{-1} \mathbf{y} = \left(\mathbf{X}^{\top} \mathbf{X} + \frac{\sigma^{2}}{s^{2}} \mathbf{I} \right)^{-1} \mathbf{X}^{\top} \mathbf{y}.$$

 $\begin{array}{l} \textbf{Mathematic Trick} \\ (\mathbf{AB} + c\mathbf{I})^{-1}\mathbf{A} = \mathbf{A}(\mathbf{BA} + c\mathbf{I})^{-1} \end{array} \end{array}$

Regularization parameter

Bayesian Linear Regression

Some facts

Ridge regression = Bayesian linear regression with
 Gaussian prior on w and find the MAP estimator.

$$p(\mathbf{w} \mid \mathbf{X}, \mathbf{y}, \sigma^2, s^2) \propto p(\mathbf{y} \mid \mathbf{X}, \mathbf{w}, \sigma^2) p(\mathbf{w} \mid s^2)$$

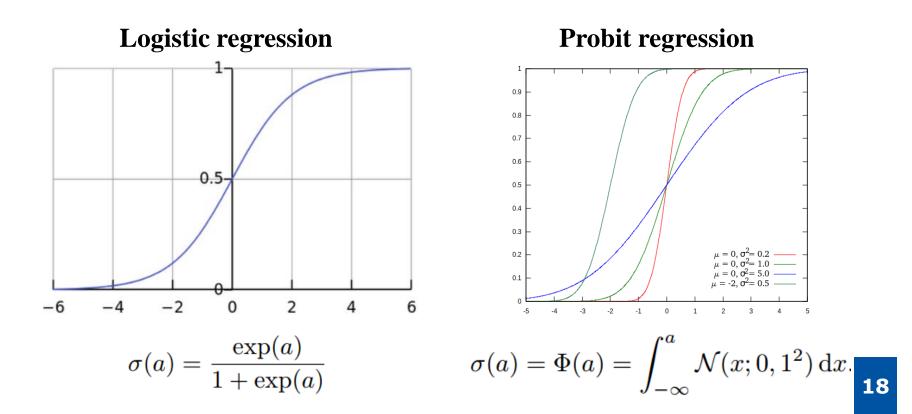
$$\begin{split} \hat{\mathbf{w}}_{\text{MAP}} &= \arg\max_{\mathbf{w}} -\frac{1}{2\sigma^2} \sum_{i=1}^{N} (\mathbf{x}_i^{\top} \mathbf{w} - y_i)^2 - \frac{1}{2s^2} \sum_{i=1}^{d} w_i^2 \\ &= \arg\min_{\mathbf{w}} \sum_{i=1}^{N} (\mathbf{x}_i^{\top} \mathbf{w} - y_i)^2 + \frac{\sigma^2}{s^2} \|\mathbf{w}\|_2^2, \end{split}$$

– Sparsity = Laplacian priori on w

Logistic Regression From Linear Regression

Non-linear transformation

$$P(y=1|X,W) = \sigma(XW)$$



Logistic Regression From Bayesian Perspective

Four main steps

- Likelihood $P(D|\theta)$ (Bernoulli distribution)

$$P(y|X,W) = \prod \sigma(X_iW)^{y_i}(1 - \sigma(X_iW))^{1-y_1}$$

- **Prior** $P(\theta)$

$$W \sim N(\mu, \Sigma);$$

- Posterior $P(\theta|D)$ $P(W|D) = \frac{P(y|X,W)P(W)}{\int P(y|X,W)P(W)dW} = \frac{P(y|X,W)P(W)}{P(y|X)}$
- Inference

Damn! Intractable

Intractable Posterior

How to solve

$P(\theta|X) \approx Q(\theta)$

- Find an approximation to the posterior
 - Variational inference
 - Laplacian Approximation
 - Assumed Density Filtering

KL(P|Q) $Q = N(\hat{\theta}, H)$ KL(Q|P)

- Draw samples from the posterior
 - Reject sampling
 - Importance sampling
 - MCMC (MH, Gibbs)
 - Slice sampling

Laplacian Approximation

Basic idea

- Target posterior

$$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)} = \frac{1}{Z}P(D|\theta)P(\theta)$$

- Approximate $\delta(\theta)$ by second-order taylor expansion. (*recall Newton methods*)

$$\delta(\theta) = \log P(D|\theta) + \log P(\theta)$$

$$\delta(\theta) \approx \delta(\hat{\theta}) - \frac{1}{2} (\theta - \hat{\theta})^T H(\theta - \hat{\theta}) \qquad H = -\nabla^2 \delta(\theta) \Big|_{\theta = \hat{\theta}}$$

$$P(\theta|D) \approx \exp\left(\delta(\hat{\theta})\right) \exp\left(-\frac{1}{2} (\theta - \hat{\theta})^T H(\theta - \hat{\theta})\right) = N(\hat{\theta}, H^{-1})$$

(21)

Laplacian Approximation For Bayesian Logistic Regression

Basic idea

- Predictive distribution

$$P(y^*|X^*,D) = \int \underbrace{P(y^*|W,X^*)}_{\sigma(XW)} \underbrace{P(W|D)}_{\approx\delta(W)} dW = \int \sigma(XW)N(\widehat{W},H^{-1})dW$$

- Switch $\sigma(XW)$

case LOGISTIC_FUNCTION

Still intractable

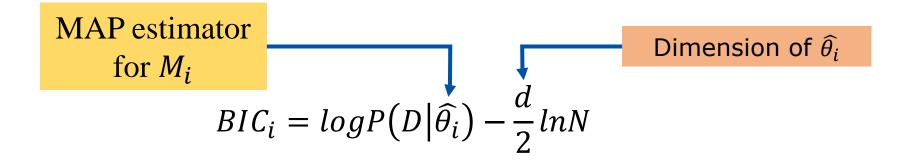
case PROBIT_FUNCTION Bayesian Moderation

$$\int \Phi(XW) N(\widehat{W}, H^{-1}) dW = \Phi\left(\frac{X^* \widehat{W}}{\sqrt{1 + X^* H^{-1} X^* T}}\right)$$

Laplacian Approximation and Bayesian Information Criterion

Basics about BIC

- A criterion for Bayesian Model Selection
- Model with the largest BIC is preferred
- Closely related to the Akaike information criterion (AIC)
- Given a set of models $\{M_i\}$, and observed data D



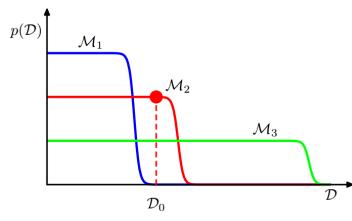
From Laplacian Approximation To BIC

Bayesian Model Selection

- Model posterior

$$P(M|D) = \frac{P(D|M)P(M)}{P(D)}$$

- **Posterior odd** $\frac{P(M_i|D)}{P(M_j|D)} = \frac{P(D|M_i)P(M_i)}{P(D|M_j)P(M_j)} = \frac{P(M_i)\int P(D|\theta_i, M_i)P(\theta_i|M_i)d\theta_i}{P(M_j)\int P(D|\theta_j, M_j)P(\theta_j|M_j)d\theta_j}$



Automatically gives a preference towards simpler models, in line with <u>Occam's razor</u>

From Laplacian Approximation To BIC

- Posterior approximation

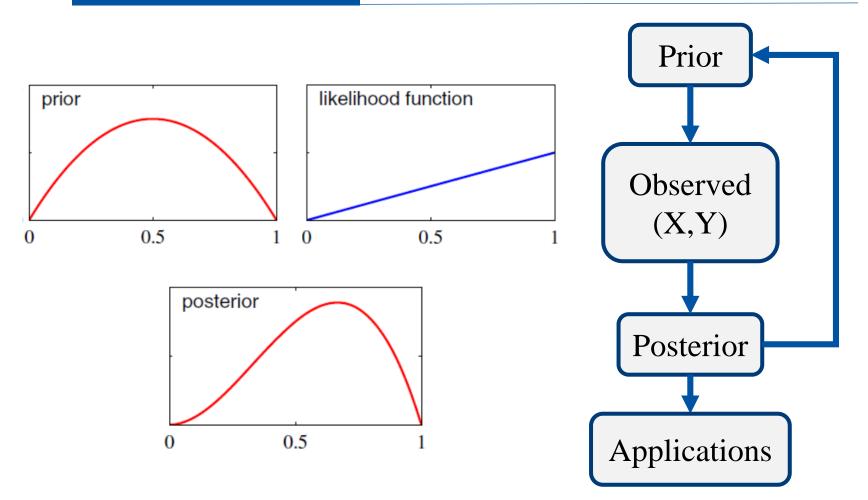
$$P(\theta_i|D, M_i) = \frac{P(D|\theta_i, M_i)P(\theta_i|M_i)}{P(D|M_i)} \approx N(\widehat{\theta_i}, H^{-1})$$

- Model odd (under uniform distribution) $\frac{P(M_i|D)}{P(M_j|D)} = \frac{P(D|M_i)}{P(D|M_j)}$
- BIC calculates $log P(D|M_i)$ by Laplacian Approximation

$$P(\mathbf{D}|\mathbf{M}_i) \approx \int N(\widehat{\theta}_i, H^{-1}) d\theta = \exp\left(\delta(\widehat{\theta}_i)\right) \sqrt{\frac{(2\pi)^d}{|H|}}$$

Bayesian Online Learning

Sequential update



Bayesian Online Learning

Posterior Inference

- Bayesian Conjugate

Example: Toss a coin Priori: $Beta(\alpha, \beta)$ Likelihood: Bernoulli(p)Posteriori: $Beta(\alpha + heads, \beta + tails)$

- Otherwise
 - MCMC / VI ?
 - Stochastic variational inference (SVI)
 - Sequential Monte Carlo (Particle filter)

Online Bayesian Passive-Aggressive Learning (JMLR'14)

What's the title means?

Online Learning Based on Bayesian Framework with Max Margin Property

Online Bayesian Passive-Aggressive Learning

Online Bayesian Passive-Aggressive Learning

Motivation

- PA with Bayesian extension
 - PA select one hyperplane (point estimation), which may be insufficient for some tasks (*latent variables*.)
- Online version of Max-margin Bayesian
 - Existing Max-margin Bayesian methods are offline

Online Learning Recall PA & CW

Optimization function

– **PA**

$$W_{t+1} = \arg\min_{W} \frac{1}{2} ||W - W_{t}||_{2}^{2}$$

$$s.t. L(W, (X_{t}, Y_{t})) = 0$$

$$(y = w \cdot x \quad w \sim N(\mu, \Sigma))$$

$$(u_{t+1}, \Sigma_{t+1}) = \min KL(N(u, \Sigma)||N(u_{t}, \Sigma_{t}))$$

$$s.t. P(Y_{t}(W \cdot X_{i}) \geq 0) \geq \eta$$

Online Bayesian Passive-Aggressive Learning

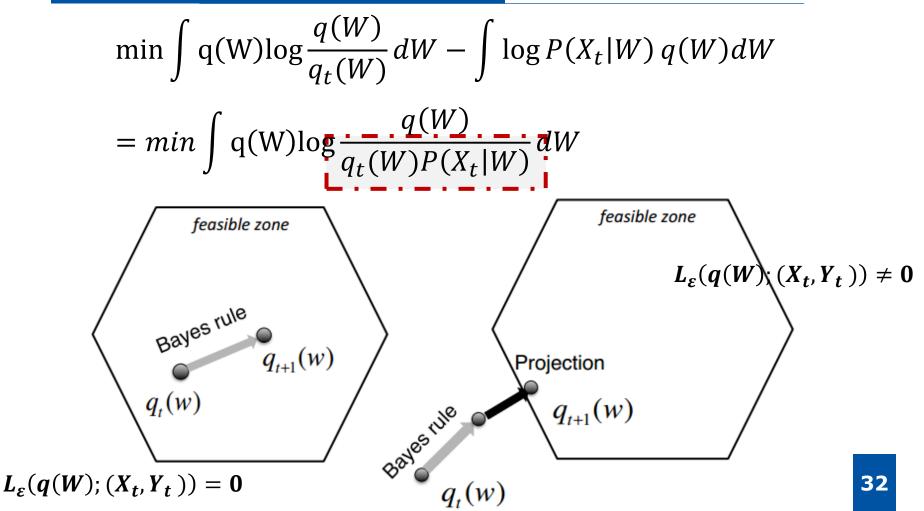
More general version of CW

$W \sim N(\mu, \Sigma)$	$(u_{t+1}, \Sigma_{t+1}) = \min KL(N(u, \Sigma) N(u_t, \Sigma_t))$ s.t. $P(Y_t(W \cdot X_i) \ge 0) \ge \eta$
$W \sim q(W)$	$ \min \operatorname{KL}(q(W) q_t(W)) - E_{q(W)}[\log P(X_t W)] $ s.t. $L_{\varepsilon}(q(W); (X_t, Y_t)) = 0 $

More general assumption on the distribution of *W* Seek large likelihood to serve new instance *X_t*

Online Bayesian Passive-Aggressive Learning

Passive-aggressive property

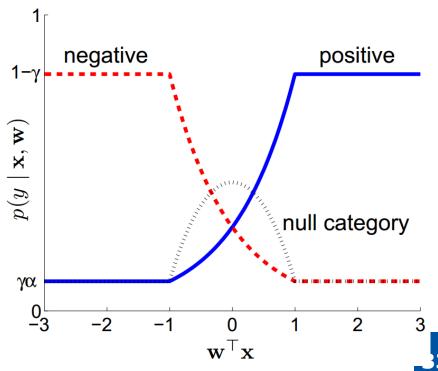


Online Active Semi-Supervised Learning

(Bayesian framework, AAAI'11)

Motivation & Method

- General online Bayesian framework, which implements the cluster assumption through a special likelihood.
- Solved by sequential
 Monte Carlo with some algorithm to minimize particle degeneracy
- Buffer strategy to handle
 concept drift and achieve
 to be effective



Another Story...

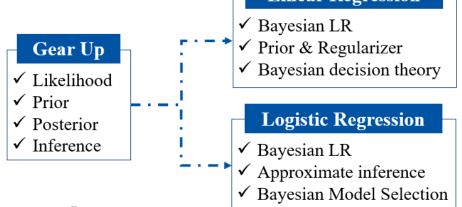
New words

- Stochastic variational inference
- Sequential Monte Carlo / particle filters
- Probit regression
- Adversarial classification
- Maximum entropy discrimination
- Bayesian Monte Carlo

—

Bayesian or not

- Bayesian ideas have had a big impact in machine learning in the past 20 years or so because of the flexibility they provide in building structured models of real world phenomena.
- A Bayesian is one who, vaguely expecting a horse, and catching a glimpse of a donkey, strongly believes he has seen a mule.



Thanks

By HC