
Feature Engineering Group

Bayesian Machine Learning: Some Basics

Chen Huang

Feature Engineering Group, Data Mining Lab,

Big Data Research Center, UESTC

huangc.uestc@gmail.com



Reference

2

For more information

• http://fastml.com/bayesian-machine-learning/
• https://metacademy.org/roadmaps/rgrosse/baye

sian_machine_learning

http://fastml.com/bayesian-machine-learning/
https://metacademy.org/roadmaps/rgrosse/bayesian_machine_learning


Reference

3

For more information

Research = search again and again…



Bayesian Machine Learning

Contents

4

 Likelihood

 Prior 

 Posterior

 Inference

Gear Up

 Bayesian LR

 Prior & Regularizer

 Bayesian decision theory

Linear Regression

 Bayesian LR

 Approximate inference

 Bayesian Model Selection

Logistic Regression



Gear Up
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Four main steps

– Likelihood 𝑃(𝐷|𝜃)
– Mechanism giving rise our observations D given a 

particular value of the parameters of interest

– Prior 𝑃(𝜃)
– Summarize our prior beliefs about the parameters

– Posterior 𝑃(𝜃|𝐷)
– Using Bayes Theorem to combine prior beliefs with 

observed evidence

– Inference (Challenging problem)

– Use 𝑃(𝜃|𝐷) to draw further conclusions

– Algorithms: MAP/MCMC/VI



Gear Up!

Why Bayesian?
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“ Further conclusions ”

- Point estimation if we must report a single best guess of 

theta 

- Make predictions by averaging over the posterior 

distribution

- Make decisions so as to minimize posterior expected 

loss

- compare alternative models giving rise to Bayesian 

model comparison

- Naturally extend to online and distributed learning 



Gear Up!

Bayesian or Not?
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Some issues

- How to choose a prior?

- Informative 

- Uninformative

- Intractable integrals/posteriors

- Conjugate prior

- Approximation 

𝑃 𝐷 =  𝑃 𝜃 𝑃 𝐷 𝜃 𝑑𝜃

• Gibbs sampling/MCMC
• Variational Inference
• Sequential MC/particle filter
• Stochastic MCMC/VI
• Streaming Variational Bayes



Gear Up!

Before we’re going too far… 
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Give me some Bayesian models

- Gaussian Mixture Model

- Hidden Markov Model

- Conditional Random Field

- Bayesian Networks

- Gaussian Processes

- Dirichlet Process

- ……

- BayesPA (JMLR’14 @Jun Zhu)

- OASIS      (AAAI’11 @Andrew B. Goldberg & Xiaojin Zhu)



Linear Regression
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Loss function

L 𝑌, 𝐹 𝑋 = 𝐿 𝑌, 𝑋𝛽 = 𝑌 − 𝑋𝛽 𝑇(𝑌 − 𝑋𝛽)

 𝛽 = 𝑋𝑇𝑋 −1𝑋𝑇𝑌

 𝑌 = 𝑋  𝛽

Orthogonal 

Projection 
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Four main steps

Linear Regression

From Bayesian Perspective

– Likelihood 𝑃(𝐷|𝜃)

– Prior 𝑃(𝜃)

– Posterior 𝑃(𝜃|𝐷)

𝑊~𝑁 𝜇, Σ ; 𝜀~𝑁 𝟎, 𝜎2𝑰
𝑓~𝑁 𝑋𝜇, 𝑋Σ𝑋𝑇 ; 𝑦~𝑁(𝑋𝜇, 𝑋Σ𝑋𝑇 + 𝜎2𝑰)

𝑦 = 𝑓 𝑋 + 𝜀 = 𝑋𝑊 + 𝜀

𝑃 𝑊, 𝑦 𝑋, 𝜇, Σ, 𝜎2 = 𝑁
𝜇

𝑋𝜇 ,
Σ 𝑋Σ 𝑇

𝑋Σ 𝑋Σ𝑋𝑇 + 𝜎2𝑰
𝑃 𝑊 𝐷, 𝜇, Σ, 𝜎2 = 𝑁(𝜇𝑊, Σ𝑊)
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MAP

Linear Regression

From Bayesian Perspective

– Point estimation for 𝑃(𝜃|𝐷)

𝑃 𝑊 𝐷, 𝜇, Σ, 𝜎2 = 𝑁(𝜇𝑊, Σ𝑊)
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Bayesian predictive distribution 

Linear Regression

From Bayesian Perspective

– Predictive distribution for 𝑦∗ = 𝑋∗𝑊 + 𝜀

𝑃 𝑦∗ 𝐷, 𝑋∗, 𝜇, Σ, 𝜎2

=  𝑃 𝑦∗ 𝑊, 𝑋∗, 𝜎2 𝑃 𝑊 𝐷, 𝜇, Σ, 𝜎2 𝑑𝑊

= N X∗μW, X∗Σ𝑊𝑋∗𝑇 + 𝜎2𝑰

Make predictions by averaging over the posterior 

distribution of parameters

Why MAP?



*Why MAP
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Bayesian decision theory

– Model posterior expected loss of 𝑎 by averaging the 

loss function over the unknown parameter 𝜃

How bad is 

my action

Weighted sum of 
loss caused by my 

action



*Why MAP
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Bayesian decision theory  some facts

– The Bayes estimator of 

– Posterior expected squared loss is posterior mean 

𝑬(𝜽|𝑫)
– Posterior expected absolute loss is posterior median

– Posterior expected (relaxed) 0-1 loss, we have MAP!

A decision rule that minimizes 

posterior expected loss

Optimization is easier than integration!



*Why MAP
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BDT for classification with 0-1 loss

– Bayes action is then to predict the class with the highest 

probability （MAP under 0-1 loss）



Bayesian Linear Regression
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Relation to ridge regression

𝑤~𝑁 𝜇, 𝑠2𝐼 , μ = 0, then it’s the ridge regression solution

Regularization parameter
Mathematic Trick



Bayesian Linear Regression
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Some facts

– Ridge regression = Bayesian linear regression with 

Gaussian prior on w and find the MAP estimator.

– Sparsity = Laplacian priori on w 



Logistic Regression

From Linear Regression
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Non-linear transformation

𝑃 𝑦 = 1 𝑋, 𝑊 = 𝝈(𝑿𝑾)

Probit regressionLogistic regression
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Four main steps

Logistic Regression

From Bayesian Perspective

– Likelihood 𝑃(𝐷|𝜃) (Bernoulli distribution)

– Prior 𝑃(𝜃)

– Posterior 𝑃 𝜃 𝐷

– Inference

Damn! Intractable

𝑊~𝑁 𝜇, Σ ;

𝑃(𝑦|𝑋, 𝑊) =  𝜎 𝑋𝑖𝑊
𝑦𝑖 1 − 𝜎 𝑋𝑖𝑊

1−y1

𝑃 𝑊 𝐷 =
𝑃 𝑦 𝑋, 𝑊 𝑃(𝑊)

 𝑃 𝑦 𝑋, 𝑊 𝑃 𝑊 𝑑𝑊
=

𝑃 𝑦 𝑋, 𝑊 𝑃(𝑊)

𝑃(𝑦|𝑋)



Intractable Posterior
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How to solve

- Find an approximation to the posterior 

- Variational inference          𝐾𝐿(𝑃|𝑄)

- Laplacian Approximation  𝑄 = 𝑁(  𝜃, 𝐻)
- Assumed Density Filtering 𝐾𝐿(𝑄|P)

- Draw samples from the posterior

- Reject sampling

- Importance sampling

- MCMC (MH, Gibbs)

- Slice sampling

𝑃(𝜃|𝑋) ≈ 𝑄(𝜃)



Laplacian Approximation
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Basic idea

- Target posterior

- Approximate 𝜹 𝜽 by second-order taylor expansion. 

(recall Newton methods)

𝑃 𝜃 𝐷 =
𝑃(𝐷|𝜃)P(𝜃)

𝑃(𝐷)
=

1

𝑍
𝑃 𝐷 𝜃 𝑃(𝜃)

𝛿 𝜃 = 𝑙𝑜𝑔𝑃 𝐷 𝜃 + log 𝑃(𝜃)

𝛿 𝜃 ≈ 𝛿  𝜃 −
1

2
𝜃 −  𝜃

𝑇
𝐻 𝜃 −  𝜃 𝐻 = −𝛻2𝛿 𝜃  

𝜃= 𝜃

𝑃 𝜃 𝐷 ≈ exp 𝛿  𝜃 exp −
1

2
𝜃 −  𝜃

𝑇
𝐻 𝜃 −  𝜃 = 𝑁  𝜃,𝐻−1



Laplacian Approximation

For Bayesian Logistic Regression
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Basic idea

- Predictive distribution

- Switch 𝜎 𝑋𝑊
case LOGISTIC_FUNCTION

Still intractable

case PROBIT_FUNCTION

𝑃 𝑦∗ 𝑋∗, 𝐷

=  𝑃 𝑦∗ 𝑊, 𝑋∗

𝜎(𝑋𝑊)

𝑃 𝑊 𝐷
≈𝛿 𝑊

𝑑𝑊 =  𝜎 𝑋𝑊 𝑁(  𝑊, 𝐻−1)𝑑𝑊

 Φ 𝑋𝑊 𝑁(  𝑊,𝐻−1)𝑑𝑊 = Φ
𝑋∗  W

1 + 𝑋∗𝐻−1𝑋∗𝑇

Bayesian Moderation



Laplacian Approximation and 

Bayesian Information Criterion
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Basics about BIC

- A criterion for Bayesian Model Selection

- Model with the largest BIC is preferred

- Closely related to the Akaike information criterion (AIC)

- Given a set of models {𝑀𝑖}, and observed data 𝐷

𝐵𝐼𝐶𝑖 = 𝑙𝑜𝑔𝑃 𝐷  𝜃𝑖 −
𝑑

2
𝑙𝑛𝑁

MAP estimator 

for 𝑀𝑖
Dimension of  𝜃𝑖



From Laplacian Approximation

To BIC
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Bayesian Model Selection

- Model posterior

- Posterior odd

𝑃 𝑀 𝐷 =
𝑃 D M 𝑃(𝑀)

𝑃(𝐷)

𝑃 𝑀𝑖 𝐷

𝑃(Mj|D)
=

𝑃 D M𝑖 𝑃(𝑀𝑖)

𝑃 D M𝑗 𝑃(𝑀𝑗)
=

𝑃(𝑀𝑖)  𝑃 𝐷 𝜃𝑖 , 𝑀𝑖 𝑃 𝜃𝑖 𝑀𝑖 𝑑𝜃𝑖

𝑃(𝑀𝑗)  𝑃 𝐷 𝜃𝑗 , 𝑀𝑗 𝑃 𝜃𝑗 𝑀𝑗 𝑑𝜃𝑗

Called “bayes factor in favor of 𝑀𝑖 ” 

Automatically gives a 

preference towards simpler 

models, in line with 

Occam’s razor 



From Laplacian Approximation

To BIC
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BIC

- Posterior approximation

- Model odd (under uniform distribution)

- BIC calculates log𝑃 D M𝑖 by Laplacian Approximation

𝑃 𝜃𝑖 𝐷, 𝑀𝑖 =
𝑃(𝐷|𝜃𝑖 , 𝑀𝑖)P(𝜃𝑖|𝑀𝑖)

𝑃(𝐷|𝑀𝑖)
≈ 𝑁  𝜃𝑖 , 𝐻

−1

𝑃 𝑀𝑖 𝐷

𝑃(Mj|D)
=

𝑃 D M𝑖

𝑃 D M𝑗

𝑃 D M𝑖 ≈  𝑁  𝜃𝑖 , 𝐻
−1 𝑑𝜃 = exp 𝛿  𝜃𝑖

2π 𝑑

𝐻



Bayesian Online Learning
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Sequential update

Prior

Observed 

(X,Y)

Posterior 

Applications



Bayesian Online Learning
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Posterior Inference

– Bayesian Conjugate

– Otherwise 

– MCMC / VI ?

– Stochastic variational inference (SVI)

– Sequential Monte Carlo (Particle filter)

– …..

Example: Toss a coin

Priori: 𝐵𝑒𝑡𝑎 𝛼, 𝛽
Likelihood: 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝)
Posteriori: 𝐵𝑒𝑡𝑎 𝛼 + he𝑎𝑑𝑠, 𝛽 + 𝑡𝑎𝑖𝑙𝑠



Online Bayesian 

Passive-Aggressive Learning  (JMLR'14)
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What’s the title means?

Online 

Bayesian

Passive-Aggressive Learning

Online Learning 

Based on Bayesian Framework 

with Max Margin Property



Online Bayesian 

Passive-Aggressive Learning
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Motivation

– PA with Bayesian extension

– PA select one hyperplane (point estimation), which 

may be insufficient for some tasks (latent variables.)

– Online version of Max-margin Bayesian

– Existing Max-margin Bayesian methods are offline
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Optimization function 

Online Learning

Recall PA & CW

– PA

– CW

𝑊𝑡+1 = arg min
𝑊

1

2
𝑊 − 𝑊𝑡 2

2

𝑠. 𝑡. 𝐿 𝑊, 𝑋𝑡 , 𝑌𝑡 = 0

𝑢𝑡+1, Σ𝑡+1 = min 𝐾𝐿 𝑁 𝑢, Σ ||𝑁(𝑢𝑡, Σ𝑡)
𝑠. 𝑡. 𝑃 𝑌𝑡 𝑊 ⋅ 𝑋𝑖 ≥ 0 ≥ 𝜂

𝑦 = 𝑤 ∙ 𝑥 𝑤 ~ 𝑁(𝜇, Σ)



Online Bayesian 

Passive-Aggressive Learning
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More general version of CW

𝑢𝑡+1, Σ𝑡+1 = min 𝐾𝐿 𝑁 𝑢, Σ ||𝑁(𝑢𝑡, Σ𝑡)
𝑠. 𝑡. 𝑃 𝑌𝑡 𝑊 ⋅ 𝑋𝑖 ≥ 0 ≥ 𝜂

𝑊 ~ 𝑁(𝜇, Σ)

𝑊 ~ 𝑞(𝑊) min KL(𝑞 𝑊 | 𝑞𝑡 𝑊 − 𝐸𝑞 𝑊 log 𝑃 𝑋𝑡 𝑊

𝑠. 𝑡. 𝐿𝜀 𝑞 𝑊 ; (𝑋𝑡 , 𝑌𝑡 ) = 0

More general 

assumption on the 

distribution of 𝑊

Seek large 

likelihood to serve 

new instance 𝑋𝑡



Online Bayesian 

Passive-Aggressive Learning
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Passive-aggressive property

min  q W log
𝑞 𝑊

𝑞𝑡(𝑊)
𝑑𝑊 −  log 𝑃 𝑋𝑡 𝑊 𝑞 𝑊 𝑑𝑊

= 𝑚𝑖𝑛  q W log
𝑞 𝑊

𝑞𝑡(𝑊)𝑃 𝑋𝑡 𝑊
𝑑𝑊

𝑳𝜺 𝒒 𝑾 ; (𝑿𝒕, 𝒀𝒕 ) = 𝟎

𝑳𝜺 𝒒 𝑾 ; (𝑿𝒕, 𝒀𝒕 ) ≠ 𝟎



Online Active Semi-Supervised Learning

(Bayesian framework, AAAI’11)
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Motivation & Method

– General online Bayesian framework, which implements 

the cluster assumption through a special likelihood.

– Solved by sequential 

Monte Carlo with some 

algorithm to minimize 

particle degeneracy

– Buffer strategy to handle 

concept drift and achieve 

to be effective



Another Story…
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New words

– Stochastic variational inference

– Sequential Monte Carlo / particle filters

– Probit regression

– Adversarial classification

– Maximum entropy discrimination

– Bayesian Monte Carlo

– ……



To Sum Up
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Bayesian or not

• Bayesian ideas have had a big impact in machine 

learning in the past 20 years or so because of the 

flexibility they provide in building structured models 

of real world phenomena.

• A Bayesian is one who, vaguely expecting a horse, and 

catching a glimpse of a donkey, strongly believes he has 

seen a mule.



Thanks

By HC


